

Anthropoentomophagy in Mexico and in the World

Dra. Julieta Ramos-Elorduy B. Lineville, AL, USA, April, 2010.

Today species conservation have a capital interest because they means life, as the global warm and the serious pollution of the environment that exists in the planet, united to the big degree of human migration and ignorance about the resources care by young people. Also is the way they conceive the ground appropiation, likewise the high level of soil erosion and the enormous urbanization, unified specially to the fact that one of every six habitants suffer hunger and malnutrition and die.

So, NATURAL RESOURCES acquire values that never had, not only in their role into the multiestructural net of alive organisms but by the uses that it intan beings give to them. But, at the actual rate of their utilisation, scientifics believe that for 2050, the humanity consume the resources of two planets Earth. Already, almost a half of countries consumme more than 50% of their resources biocapacity and someones are down. Among these resources are INSECTS, they have a lot of features that favor them (number, reproduction and nutritional value, besides their presence in every ecosystem). Edible Insects are a source of protein, having generally an appetizing flavor.

Anthropoentomophacy is a traditional alimentary habit that comes from Paleolithic era (7,000 years ago) registered on testimonies as peintures, sculptures, totems or deities that continue still. Nost of Edible Insects are gathered manually or using nets, axes or knives. Few species are cultivated and someones protocultivated in different parts of the world due to the profound knowledge that rurals have acquired when observe and conserve them in situ.

According to Possey (1990) indigenous people conserve 90% of the planet germplasm. Its indicate us the appreciation that they have towards them. So, their primitive methods permets their sustainable exploitation, that leads the survival of species.

There is a convergence use of some genera, families or species in the whole world. When ethnos was more isolated, so species are elected, appreciated, caring and even revered.

We have recorded 2,000 species of edible insects in the world. In Mexico we have now recorded 549 species.

It exists an overexploitation of some species, arriving to risk of extinction united to enormous fight make by the insecticides companies.

Concomitantly, some of these species because of their high demand and market, are appreciated in five forks restaurants and also are those that peasants can sell, are those in the greatest danger. Progetación natural, 2002 (%) 0-15 16-30 31-45 46-60 41-75 71. un

Original

Forme Edit case and and is seen segarated for the Telescol

PARAMETERS

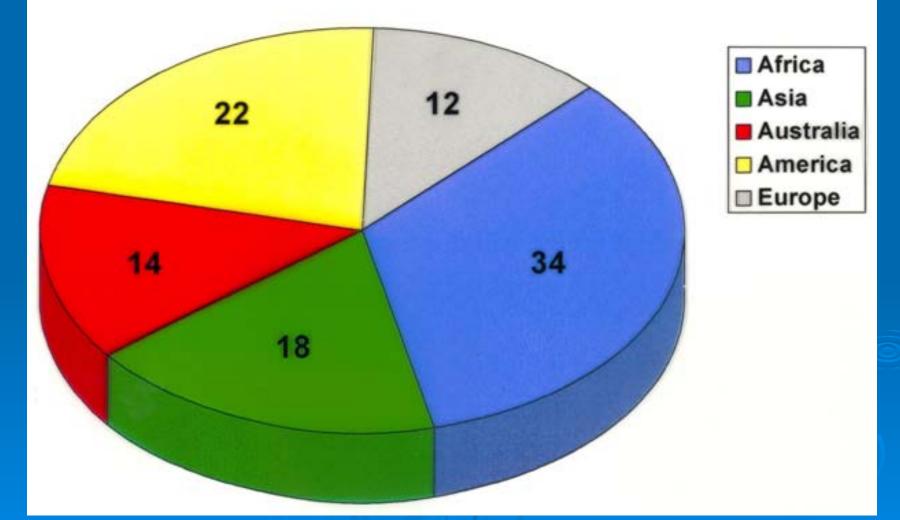
Presence Indiscriminate use Today Poorly planned development Habitat Modified Urbanization ECOLOGICAL IMPACT Introduction of varieties of plants and animals, domestic or foreign Change of soil use and climate Biocides As you can see, edible insects are consumed all over the world, more in those regions belong to tropical and subtropical areas. So, we need to pay more attention to this natural renewal resource.

- Orthoptera
 Coleoptera
- Isoptera
- 👂 Hemiptera
- Homoptera
- Diptera
- Ephemeroptera
- H. Vespidae
- Lepidoptera
 Odonata

H. Meliponidae

H. Formicidae

Neuroptera


Pthriaptera

Trichoptera

H. Apidae

EDIBLE INSECTS OF THE WORLD

Countries Number Registered that Eat Insects in the World

41 page new seatons

۰.

and controls

Ο.

A DY DAY

to a la prise den.

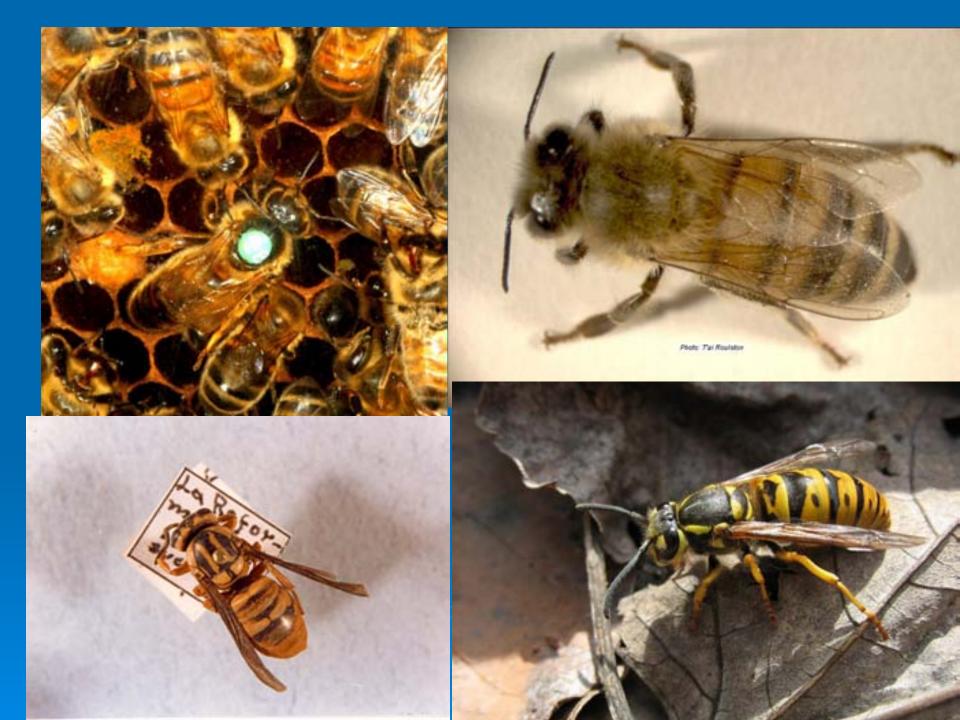
5127.0.05

1000

P 101

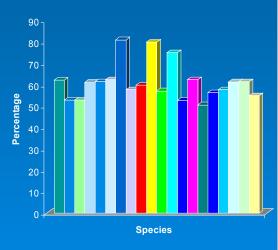
212-112

0



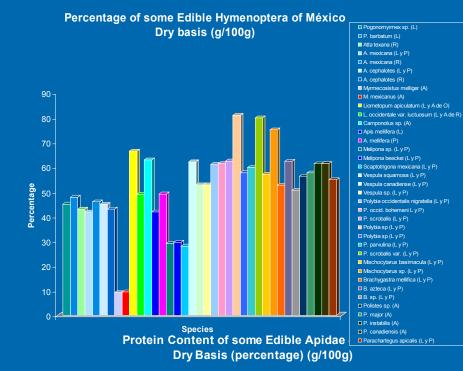
SOME STATES OF THE MEXICAN REPUBLIC WITH ANTHROPOENTOMOPHAGIC ACTIVITY

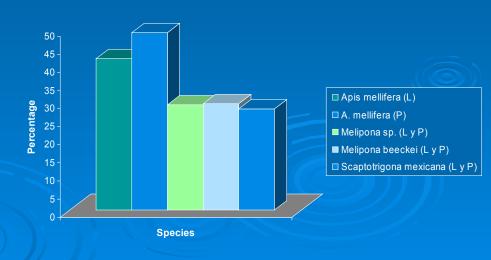
Aguascalientes	1	Nayarit	13	
Campeche	25	Nuevo León	3	
Chiapas	155	Oaxaca	134	
Chihuahua	7	Puebla	75	
DF	75	Querétaro	14	
Durango	2	Q. Roo	30	
Estado de México	160	SLP	12	
Guanajuato	11	Tabasco	21	
Guerrero	92	Tlaxcala	25	
Hidalgo	145	Veracruz	119	
Jalisco	16	Yucatán	66	
Michoacán	48	Zacatecas	7	
Morelos	44	Total	1300	
Recorded species 545		755 species are repeated in some states		

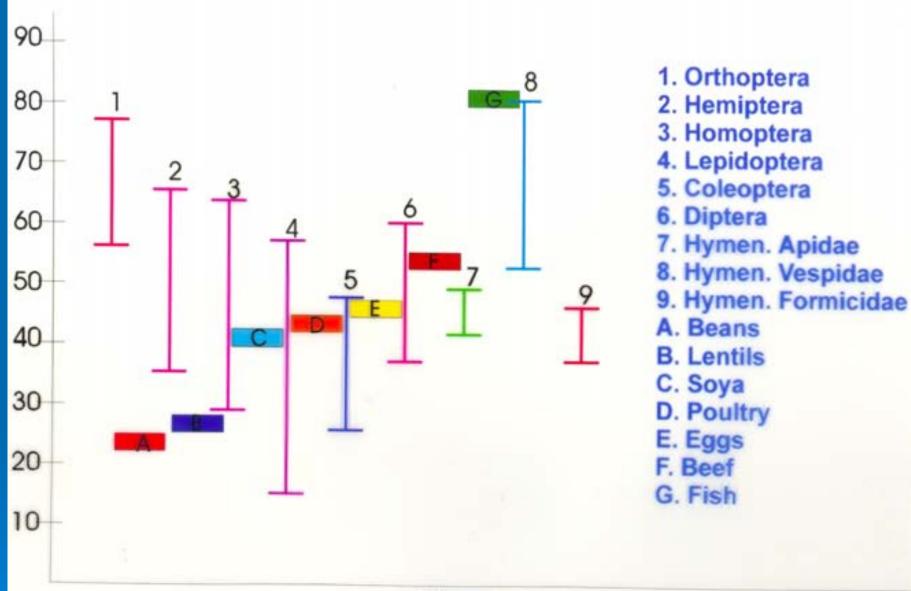


NUTRITIVE VALUE, PROTEIN CONTENT

Protein content of some Edible Formicidae of Mexico Dry Basis (percentage) (g/100g)

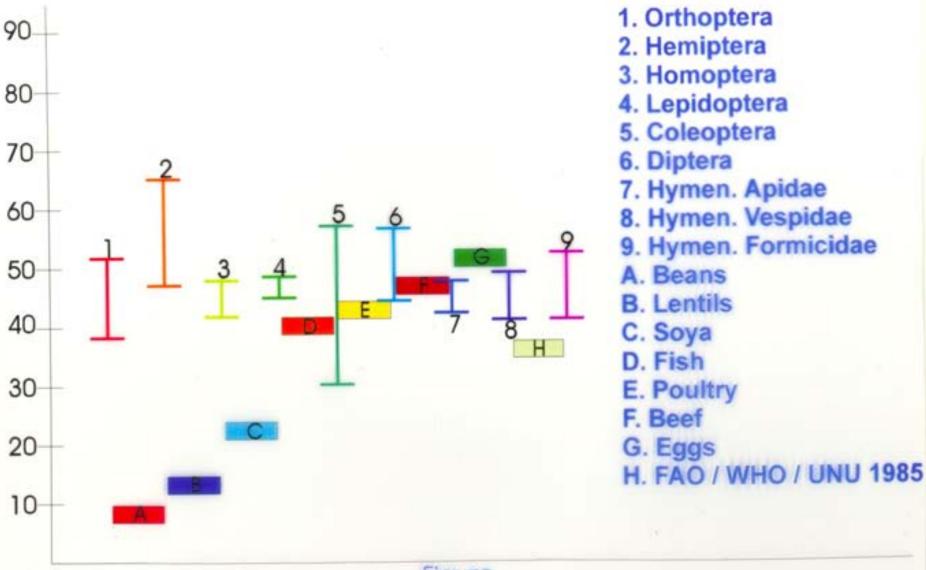

Protein Content of some Edible Vespidae of Mexico Dry Basis (percentage)(g/100g)



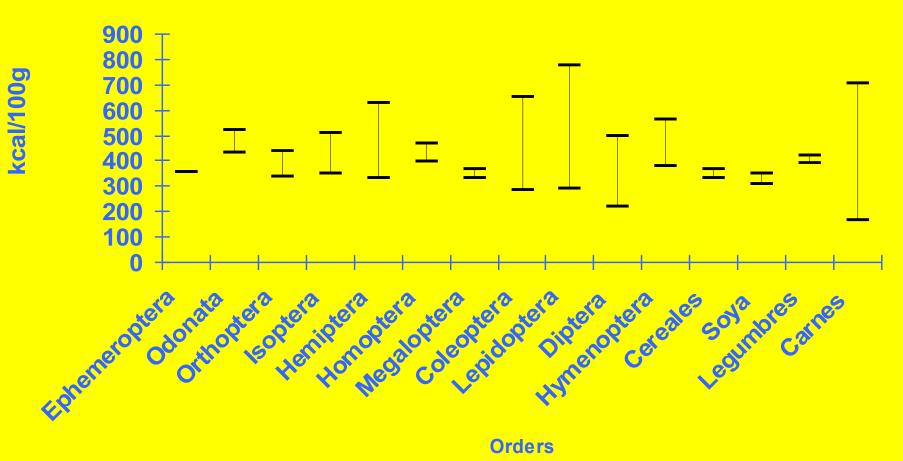

P. barbatum (L) Atta texana (R) A. mexicana (L y P) A. mexicana (R) A. cephalotes (L y P) □ A. cephalotes (R) Myrmecosistus melliger (A) M. mexicanus (A) Liometopum apiculatum (L y A de O) L. occidentale var. luctuosum (L y A de R) Camponotus sp. (A)

> □ Vespula squamosa (L y P) □ Vespula canadiense (L y P) Vespula sp. (L y P) Polybia occidentalis nigratella (L y P) P. occid. bohemani L y P) P. scrobalis (L y P) □ Polybia sp (L y P) Polybia sp (L y P) P. parvulina (L y P) P. scrobalis var. (L y P) Mischocytarus basimacula (L y P) Mischocytarus sp. (L y P) Brachygastra mellifica (L y P) B. azteca (L y P) □ B. sp. (L y P) Polistes sp. (A) P. major (A) P. instabilis (A) P. canadiensis (A)

Paracharteous apicalis (L v P)



Figure


Ranges of protein percentage of edible insects in the differents orders studied compared with the protein value of some conventional alimentary products.

Figure

Ranges of Total quantity of essential amino acids in edible insects of the differents orders studied compared with the value of essential amino acids of some conventional alimentar products and with the FRO / WHO / UNU 1985 Pattern.

Energy provided by different orders of edible insects and conventional food

RANGE OF CONTENT OF DIVERSE MINERAL SALTS OF SOME ORDERS OF EDIBLE INSECTS OF MEXICO COMPARED WITH CONVENTIONAL PRODUCTS

g/100g

Insects	Na	K	Ca	Zn	Fe	Mg	
Orthoptera	0.066-0-609	0.044-0.574	0.051-0.120	0.016-0.078	0.016-0.044	0.352-0943	
Hemiptera	0.020-0.572	0.014-0.256	0.075-0.104	0.024-0.112	0.012-0.130	0.744-2.550	
Lepidoptera	0.048-0.544	0.048-2.912	0.048-0.088	0.022-0.040	0.017-0-054	0.384-1.628	
Hymenoptera	0.063-1.608	0.063-1.030	0.040-0.224	0.016-0.050	0.014-0.046	0.348-1.129	
	Conventional Products						
Animals							
Cattle	0.060	0.370	0.01	0.00042	0.028	0.025	
Poultry	0.086	0.321	0.02		0.015	0.023	
Fish	0.104	0.256	0.01	0.0025	0.0302	0.023	
Turkey				0.00296			
Milk			0.12	0.00334	0.0001	0.01	
Egg			0.05	0.00144	0.023	0.01	

VITAMINS THAT LODGE SOME EDIBLE INSECTS OF MEXICO BY ORDER

Vitamin/Orders	Quantity	Vitamin/Orders	Quantity
Thiamin		Vitamin C	
Orthoptera	1.430 a 6.110 mg/100g	Orthoptera	23.84 a 23.92 mg
Hemiptera	0.643 a 1.329 mg	Coleoptera	15.44 a 45.76 mg
Lepidoptera	1.548 a 1.650 mg	Lepidoptera	8.6 a 46.33 mg
Coleoptera	0.08 a 0.157 mg	Hymenoptera	32.1 a 36.14 mg
Hymenoptera	0.210 a 1.05 mg	Vitamin A	
Diptera	1.37 a 1.47 mg	Orthoptera	0.33 a 160.52 UI
Riboflavin		Lepidoptera	73.56 a 79.81 UI
Orthoptera	1.320 a 2.250 mg	Hymenoptera	2.93 a 5.07 UI
Hemiptera	0.908 a 0.990 mg	Vitamin D	
Lepidoptera	2.987 a 3.230 mg	Orthoptera	164.91 a 852.66 UI
Coleoptera	0.349 a 0.355 mg		
Hymenoptera	0.050 a 1.700 mg		
Odonata	0.09 a 0.109 mg		
Diptera	0.48 a 2.56 mg		
Niacin			

DIGESTIBILITY

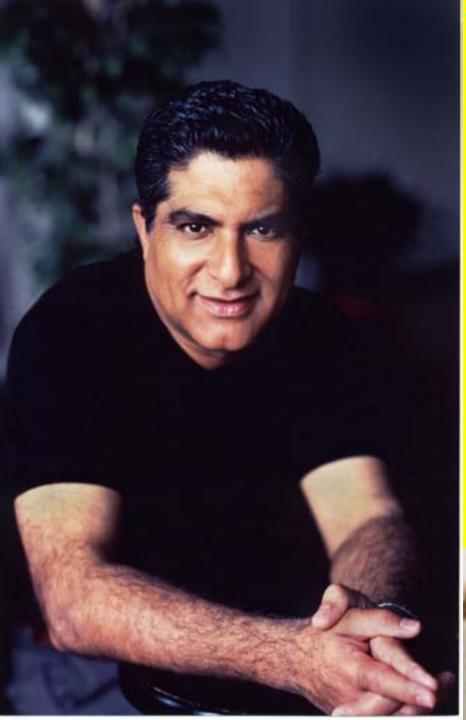
IN VITRO	Dry Matter	72% - 96%	
	→ Protein	64% - 87%	(> 60% = Protein concetrates) (Ramos-Elorduy et al. 1981)
	> PER		89% Bees, 82% Ants, 75% Grasshoppers
IN VIVO	UPN	vs. Caseine 100%	71.7% Bees, 77.63% Ants, 57.4% Grasshoppers
	→ DA		90% Bees, 91.3% Ants, 83.7% Grasshoppers

EFFICIENCY CONVERSION

INSECTS	2.1:1 to 11.8:1	avg. 4-5:1	0.5 : 1 Flies	
Chickens	2.6 : 1	A		
Sheep	19 : 1			
Livestock	20 : 1			
INSECT TRANSDUCTION				
5 - 8 % vegetal protein 48 - 61	% animal protein			
Crickets	5 times faster than cow	5 times faster than cows		

VALUES OF PROFIT O DIGESTIBILITY IN VITRO	F EDIBLE INSECTS Dry matter	MINIMUM 61	MEDIA 78.5	MAXIMUM 96
	Proteinic	78	88.5	99
DIGESTIBILITY IN VIVO	Proteinic			
White rats	DA	77.74	82.29	86.84
	Casein	93.17	94.03	94.89
	PER	0.82	1.39	1.95
	Casein	2.4	2.97	3.53
	PNU	31.64	40.00	48.35
	Casein	47.52	53.98	60.43
EFFICIENCY CONVERSION				
Chicken	Tenebrio	1.39	2.37	1.37
	Musca	1.37	1.45	1.63
	Cochlyiomia	1.24	1.30	1.71
	Grasshoppers	1.45	1.47	1.41
	Bugs	1.78	1.93	1.59
	-			4 00

"Saving genes" theory was based insects ingestion.


 According to archaeologist and anthropologist, edible insects gave the reproductive success to human beings.
 But we have a paleolithic body living in a postindustrial society.

Sustainability

OSCAL

Because of the significant developments that have suffered Anthropoentomophagy, sustainability of the species is fundamental. Therefore, it is necessary to take certain measures for species conservation: We can assert that more than 100 species of edible insects in Mexico, can be tested for their sustainability over 500 years, studying the Codex and manuscripts sent to Spain by the chroniclers. Nowadays it exist in Puebla state sustainable culture of Paradirphia fumosa and in Chiapas State of Arsenura armida.

Conservation of the species Geographical location (range from its territory). Correct identification of species. Literature searched. Type of nutrition. Range of temperature, humidity and altitude. Knowledge of life cycle. Knowledge of population density. Dates for optimal exploitation, avoiding species risk Knowledge of survival rate, degree of parasitism or predation. Investigate if it exists a protoculture. To study, planning and implementation a formal culture.

As Deepak Chopra mention: "if insects disappear from the planet, five years after the human beings life would not exists more", and on the opposite "if human beings dissapear from the planet five years after life would flourish, because we are the predators and the danger today".

